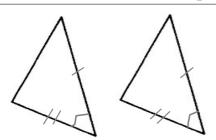

Смежные углы $\alpha + \beta = 180^{\circ}$ Накрест лежащие углы, односторонние и соответственные

Свойства углов при параллельных прямых:	Признаки параллельности прямых:
1. Если прямые параллельны, то накрест лежащие углы равны.	1. Если накрест лежащие углы равны, то прямые параллельны.
2. Если прямые параллельны, то соответственные углы равны.	2. Если соответственные углы равны, то прямые параллельны.
3. Если прямые параллельны, то сумма односторонних углов равна 180° .	3. Если сумма односторонних углов равна 180° , то прямые параллельны.

Треугольники

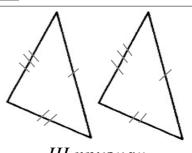
Основные линии


Высоты (перпендикуляр к противоположной стороне) пересекаются в одной точке.

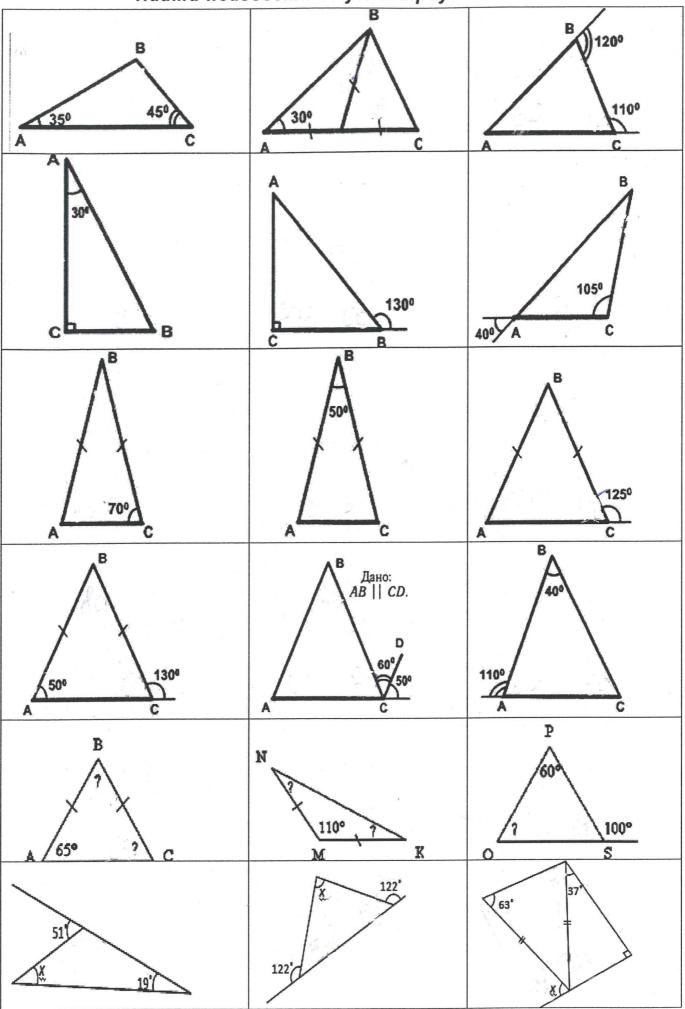
Медианы (делят стороны пополам) пересекаются в одной точке и делятся в *отношении* **2:1**, считая от вершины.

Биссектрисы (делят углы пополам) пересекаются в одной точке.

Средняя линия соединяет середины двух сторон, параллельна третьей стороне, равна её половине.

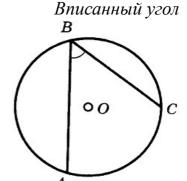

<u>Признаки равенства треугольников</u>

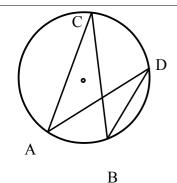
<u> I признак</u> по двум сторонам и углу между ними

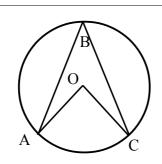

<u>II признак</u> по стороне и прилежащим к ней углам

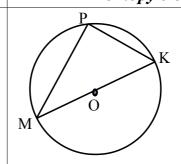
III признак по трём сторонам

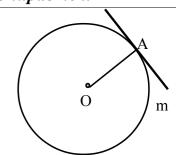
Най	дите указанные углы	Н	айдите указанные углы
1.	110° XX	7.	Найдите величину угла DOK , если OK — биссектриса угла AOD , угол $DOB = 108^\circ$. $A \longrightarrow O$
2.	50° X	8.	Прямые m и n параллельны. Найдите <3, если <1 = 22°, <2 = 72°. m 2
3.	130° × 170°	9.	Углы, отмеченные на рисунке одной дугой, равны. Найдите угол α .
4.	По данным рисунка найдите угол 1. 1	10	углы, отмеченные на рисунке одной дугой, равны. Найдите угол α .
5.	На плоскости даны четыре прямые. Известно, что $\angle 1 = 120^{\circ}$, $\angle 2 = 60^{\circ}$, $\angle 3 = 55^{\circ}$. Найдите $\angle 4$.	11	АDE. A
6.	На прямой AB взята точка M . Луч MD — биссектриса угла CMB . Известно, что угол $DMC = 60^\circ$. Найдите угол CMA .	12	То рисунку найти углы 1, 2, 3. с d 140° 110° 2 3

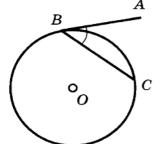

Найти неизвестные углы треугольника.

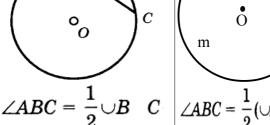

<u>Углы в окружностях</u>

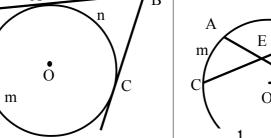


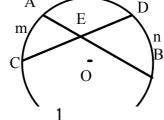

 $\angle AOB = \cup A \quad B$ Центральный угол равен дуге, на которую он опирается.

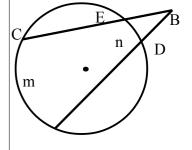


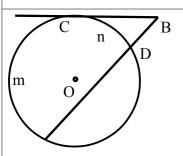

 $\angle ABC = \frac{1}{2} \cup A \quad C$ Вписанный угол равен половине дуги, на которую он опирается.

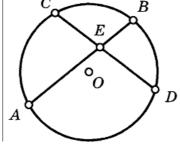


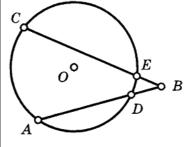


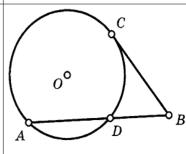




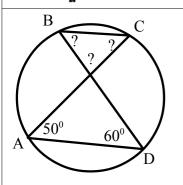


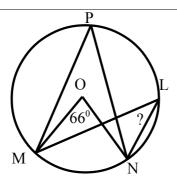


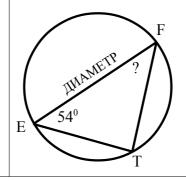

$$\angle ABC = \frac{1}{2}(\cup AmC - \cup AnC)$$

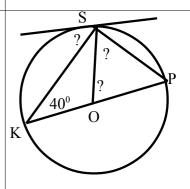

 $\angle ABC = \frac{1}{2}(\cup AmC - \cup AnC)$ $\angle AEC = \frac{1}{2}(\cup AmC + \cup BnD)$ $\angle ABC = \frac{1}{2}(\cup AmC - \cup EnD)$

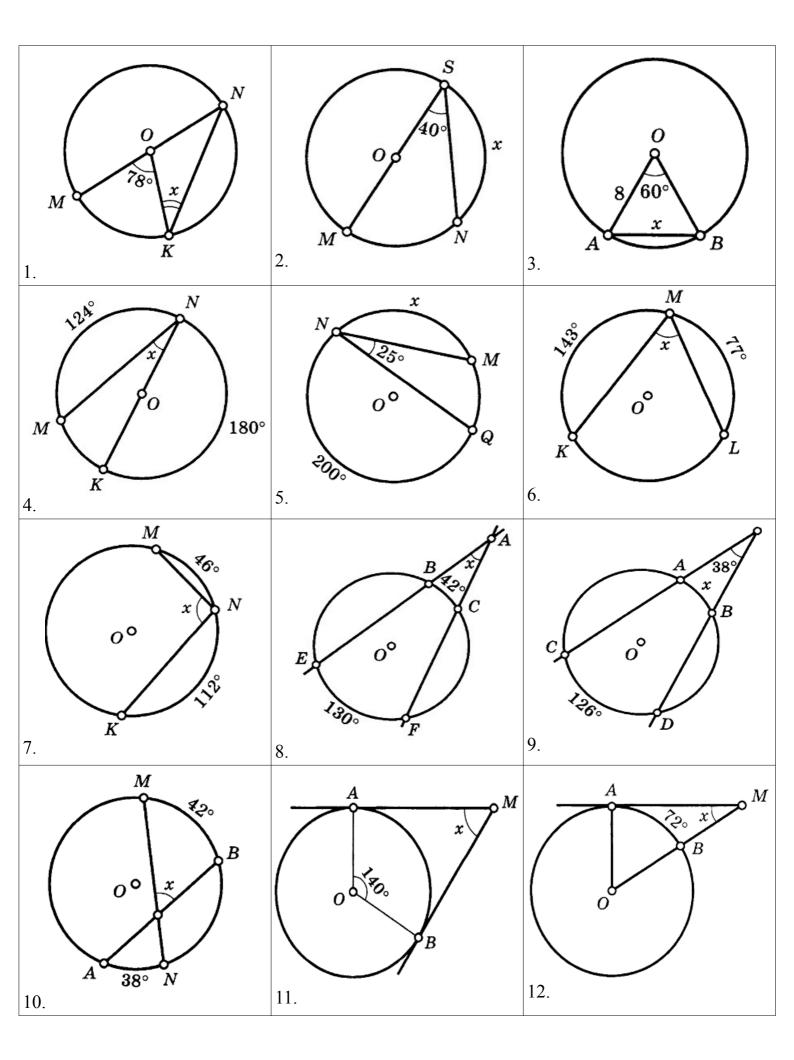
$$\angle ABC = \frac{1}{2}(\cup AmC - \cup EnD)$$

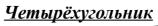


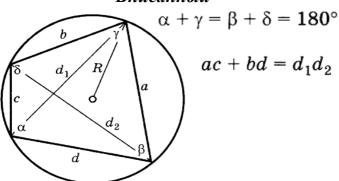

$$\angle ABC = \frac{1}{2}(\cup AmC - \cup CnD) \quad AE \cdot EB = CE \cdot ED$$

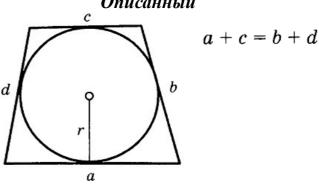

$$AE \cdot EB = CE \cdot ED$$

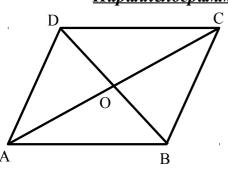

$$DB \cdot AB = EB \cdot CB$$


$$AB \cdot DB = BC^2$$

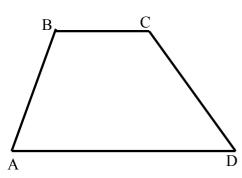


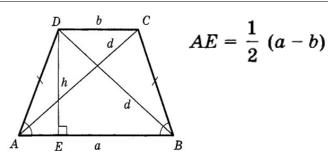




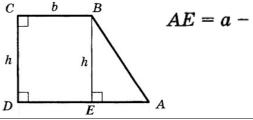

Вписанный

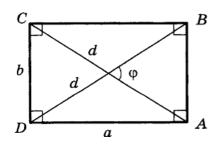
Описанный

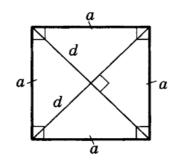

<u>Параллелограмм</u>


$$d_1^2 + d_2^2 = 2(a^2 + b^2)$$

<u>Ромб</u> O

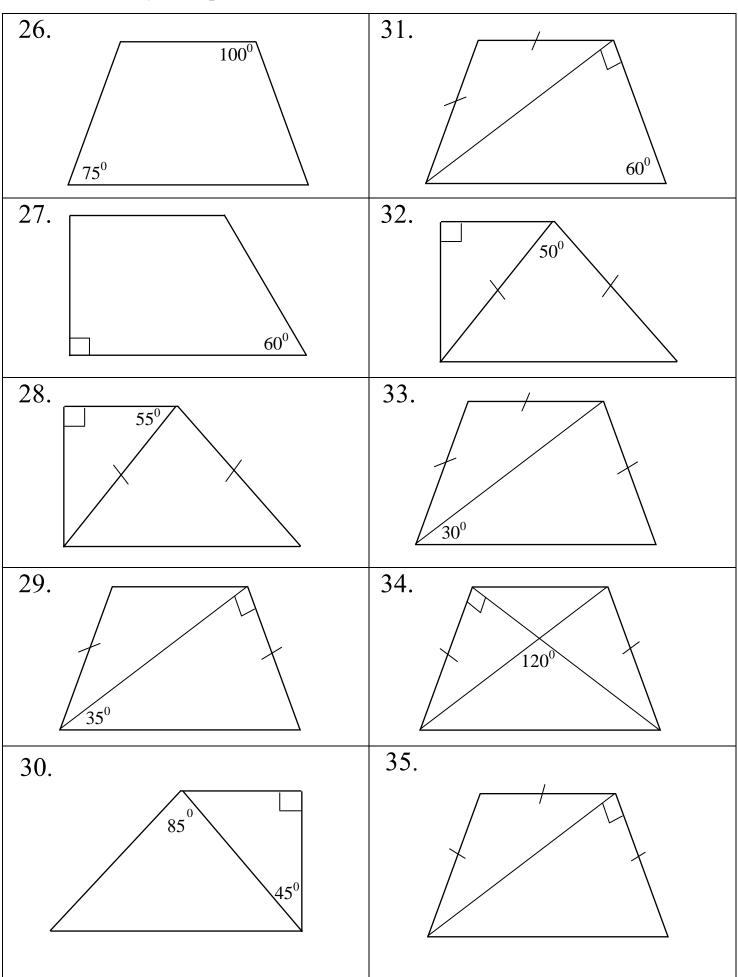

<u>Трапеция</u>


$$l=\frac{1}{2}(a+b)$$

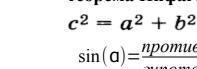

$$AE = a - b$$

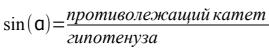
Прямоугольник

<u>Квадрат</u>



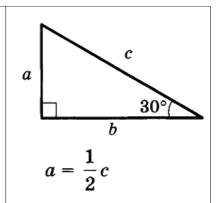
Найдите углы параллелограмма 1. 6. ∠*AOB* - ? В 2. 7. В В 110 40 35 A A 3. 8. В В 25 *AOB - ?* D A 9. 4. *АВСО* — ромб CВ В K D5. 10. *ABCD* — ромб

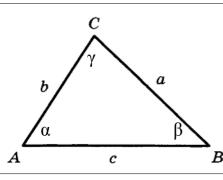

Найдите все углы


Найдите все углы		
ромба:	прямоугольника:	квадрата:
11.	16. 55°	21.
12.	17.	22. P - ?
13.	18.	23.
14.	19.	24.
15. T ₅₀	20. 115° /70°	25.

Найдите все углы трапеции

теорема Пифагора:





$$\cos(a) = \frac{npuлежащий катет}{гunomeнyза}$$

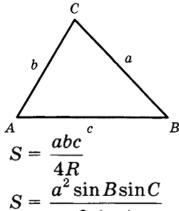
$$tg\left(\mathbf{a}\right) = \frac{npomuволежащий катет}{npuлежащий катет}$$

$$ctg\left(\mathbf{a}\right) = \frac{npuлежащий катет}{npomuволежащий катет}$$

теорема синусов:

$$\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma} = 2R$$

теорема косинусов:


$$a^2 = b^2 + c^2 - 2bc \cos \alpha,$$

$$b^2 = c^2 + a^2 - 2ca \cos \beta,$$

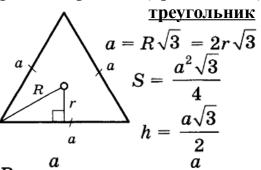
$$c^2 = a^2 + b^2 - 2ab \cos \gamma.$$

Основное тригонометрическое тождество

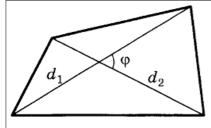
$$\sin^2 a + \cos^2 a = 1$$

произвольный треугольник

$$S = \frac{1}{2}ah_a$$

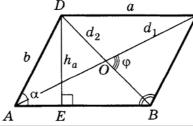

$$S = \frac{1}{2}ab \sin \gamma$$

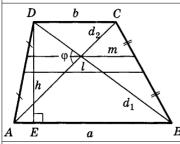
$$S = \sqrt{p(p-a)(p-b)(p-c)}$$


(формула Герона)

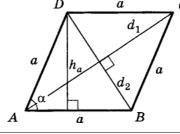
$$S = p \ r$$
, где $p = \frac{1}{2}(a + b + c)$ $R = \frac{a}{\sqrt{3}}$

равносторонний (правильный)

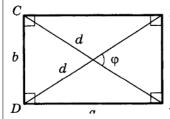



произвольный четырёхугольник

$$S = \frac{1}{2} d_1 d_2 \sin \varphi$$

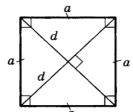

 7^{C} <u>параллелограмм</u> $S = a \cdot h_a$ $S = ab \sin \alpha$ $S = \frac{1}{2} d_1 d_2 \sin \phi$

ромб



 $S = \frac{1}{2}(a+b) \cdot h$ $S = l \cdot h$

$$S = \frac{1}{2}d_1 \cdot d_2 \sin \varphi$$


 $S = a \cdot h_a$ $S = a^2 \sin \alpha$ $S = \frac{1}{2} d_1 \cdot d_2$

<u>прямоугольник</u>

$$S = ab$$

$$S = \frac{1}{2}d^2 \sin \varphi$$

<u>квадрат</u>

$$S = a^2$$

$$S = \frac{1}{2}d^2$$

<u>No</u>	Задание	Ответ
1.	Угол при вершине, противолежащей основанию равнобедренного треугольника, равен 30°. Боковая сторона треугольника равна 10. Найдите площадь этого треугольника.	
2.	Угол при вершине, противолежащей основанию равнобедренного треугольника, равен 150°. Найдите боковую сторону треугольника, если его площадь равна 100.	
3.	Боковая сторона равнобедренного треугольника равна 5, а основание равно 6. Найдите площадь этого треугольника.	
4.	Найдите площадь треугольника, две стороны которого равны 8 и 12, а угол между ними равен 30°.	
5.	Площадь треугольника ABC равна 4. DE — средняя линия. Найдите площадь треугольника CDE .	
6.	У треугольника со сторонами 9 и 6 проведены высоты к этим сторонам. Высота, проведенная к первой стороне, равна 4. Чему равна высота, проведенная ко второй стороне?	
7.	Найдите площадь квадрата, если его диагональ равна 1.	
8.	Площадь прямоугольника равна 18. Найдите его большую сторону, если она на 3 больше меньшей стороны.	
9.	Найдите периметр прямоугольника, если его площадь равна 18, а отношение соседних сторон равно 1:2.	
10.	Периметр прямоугольника равен 42, а площадь 98. Найдите большую сторону прямоугольника.	
11.	Диагональ прямоугольника вдвое больше одной из его сторон. Найдите больший из углов, который образует диагональ со сторонами прямоугольника? Ответ выразите в градусах.	
12.	Параллелограмм и прямоугольник имеют одинаковые стороны. Найдите острый угол параллелограмма, если его площадь равна половине площади прямоугольника. Ответ дайте в градусах.	
13.	В параллелограмме $ABCD$ $AB = 3$, $AD = 21$, $\sin A = \frac{6}{7}$. Найдите большую высоту параллелограмма.	
14.	Стороны параллелограмма равны 9 и 15. Высота, опущенная на первую сторону, равна 10. Найдите высоту, опущенную на вторую сторону параллелограмма.	
15.	Площадь параллелограмма равна 40, две его стороны равны 5 и 10. Найдите большую высоту этого параллелограмма.	
16.	Биссектриса тупого угла параллелограмма делит противоположную сторону в отношении 4:3, считая от вершины острого угла. Найдите большую сторону параллелограмма, если его периметр равен 88.	
17.	Точка пересечения биссектрис двух углов параллелограмма, прилежащих к одной стороне, принадлежит противоположной стороне. Меньшая сторона параллелограмма равна 5. Найдите его большую сторону.	
18.	Площадь параллелограмма $ABCD$ равна 189. Точка E — середина стороны AD . Найдите площадь трапеции $AECB$.	

19.	Площадь параллелограмма $ABCD$ равна 153. Найдите площадь параллелограмма $A'B'C'D'$, вершинами которого являются середины сторон данного параллелограмма.	
20.	Площадь параллелограмма $ABCD$ равна 176. Точка E — середина стороны CD . Найдите площадь треугольника ADE .	
21.	Угол между стороной и диагональю ромба равен 54° . Найдите острый угол ромба.	
22.	Найдите площадь ромба, если его высота равна 2, а острый угол 30°.	
23.	Площадь ромба равна 18. Одна из его диагоналей равна 12. Найдите другую диагональ.	
24.	Найдите высоту ромба, сторона которого равна $\sqrt{3}$, а острый угол равен 60°.	
25.	Найдите большую диагональ ромба, сторона которого равна $\sqrt{3}$, а острый угол равен 60° .	
26.	Диагонали ромба относятся как 3:4. Периметр ромба равен 200. Найдите высоту ромба.	
27.	Диагонали четырехугольника равны 4 и 5. Найдите периметр четырехугольника, вершинами которого являются середины сторон данного четырехугольника.	
28.	Основания равнобедренной трапеции равны 51 и 65. Боковые стороны равны 25. Найдите синус острого угла трапеции.	
29.	Основания равнобедренной трапеции равны 17 и 87. Высота трапеции равна 14. Найдите тангенс острого угла.	
30.	Основания равнобедренной трапеции равны 14 и 26, а ее периметр равен 60. Найдите площадь трапеции.	
31.	Найдите площадь прямоугольной трапеции, основания которой равны 6 и 2, большая боковая сторона составляет с основанием угол 45°.	
32.	Основания равнобедренной трапеции равны 14 и 26, а ее боковые стороны равны 10. Найдите площадь трапеции.	
33.	Основания трапеции равны 18 и 6, боковая сторона, равная 7, образует с одним из оснований трапеции угол 150°. Найдите площадь трапеции.	
34.	Основания трапеции равны 20 и 16, боковая сторона равна 8. Площадь трапеции равна 72. Найдите острый угол трапеции, прилежащий к данной боковой стороне. Ответ выразите в градусах.	
35.	Основания трапеции равны 4 и 10. Найдите больший из отрезков, на которые делит среднюю линию этой трапеции одна из ее диагоналей.	
36.	В равнобедренной трапеции большее основание равно 25, боковая сторона равна 10, угол между ними 60° . Найдите меньшее основание.	
37.	Прямая, проведенная параллельно боковой стороне трапеции через конец меньшего основания, равного 4, отсекает треугольник, периметр которого равен 15. Найдите периметр трапеции.	
38.	Основания трапеции равны 3 и 2. Найдите отрезок, соединяющий середины диагоналей трапеции.	
39.	В равнобедренной трапеции диагонали перпендикулярны. Высота трапеции равна 12. Найдите ее среднюю линию.	
40.	Основания равнобедренной трапеции равны 6 и 12. Синус острого угла трапеции равен 0,8. Найдите боковую сторону.	

No	Задание	Ответ
1.	В треугольнике ABC угол C равен 90° , $AC = 4$, $\cos A = 0, 5$. Найдите AB .	
2.	В треугольнике ABC угол C равен 90°, CH — высота, $BC = 8$, $BH = 4$. Найдите $\sin A$.	
3.	В треугольнике ABC угол C равен 90°, CH — высота, $BC = 25$, $BH = 20$. Найдите $\cos A$.	
4.	В треугольнике ABC угол C равен 90°, CH высота, $BC = 4\sqrt{5}$, $BH = 4$. Найдите ${}^{\rm tg}A$.	
5.	В треугольнике ABC угол C равен 90°, $AC = 4.8$, $\sin A = \frac{7}{25}$. Найдите AB .	
6.	В треугольнике ABC угол C равен 90°, $AC = 2$, $\sin A = \frac{\sqrt{17}}{17}$. Найдите BC .	
7.	В треугольнике ABC угол C равен 90° , $BC = 2$. Найдите AC .	
8.	В треугольнике ABC угол C равен 90° , $tgA = \frac{33}{4\sqrt{33}}$, $AC = 4$. Найдите AB .	
9.	В треугольнике ABC угол C равен 90°, $AC = 8$, $tgA = 0, 5$. Найдите BC .	
10.	В треугольнике ABC угол C равен 90° , $AC = 24$, $BC = 7$. Найдите $\sin A$.	
11.	В треугольнике ABC угол C равен 90°, CH высота, $BH=12$, $\sin A=\frac{2}{3}$. Найдите AB	
12.	В треугольнике ABC угол C равен 90°, CH — высота, $BH = 12$, $tgA = \frac{2}{3}$. Найдите AH .	
13.	В треугольнике ABC угол C равен 90°, CH высота, $BC = 3$, $\sin A = \frac{1}{6}$. Найдите AH .	
14.	В треугольнике ABC угол C равен 90°, CH — высота, $AC = 3$, $\cos A = \frac{1}{6}$. Найдите BH .	
15.	В треугольнике ABC угол C равен 90°, CH — высота, $AB = 13$, $tgA = \frac{1}{5}$. Найдите AH .	
16.	В треугольнике ABC угол C равен 90°, $AB=13$, $tgA=\frac{1}{5}$. Найдите высоту CH .	

17.	В треугольнике $ABCAC = BC = 8$, $\cos A = 0.5$. Найдите AB .	
18.	B треугольнике $ABCAC = BC = 5$, $\sin A = \frac{7}{25}$. Найдите AB .	
19.	B треугольнике $ABCAC = BC = 7$, $tgA = \frac{33}{4\sqrt{33}}$. Найдите AB .	
20.	В треугольнике $ABCAC = BC$, $AB = 8$, $\cos A = 0.5$. Найдите AC .	
21.	В треугольнике $ABCAC = BC$, $AB = 9.6$, $\sin A = \frac{7}{25}$. Найдите AC .	
22.	В треугольнике $ABCAC = BC$, $AB = 8$, $tgA = \frac{33}{4\sqrt{33}}$. Найдите AC .	
23.	В треугольнике $ABC\ AC = BC$, $AH = B$ высота, $AB = 5$, $\sin BAC = \frac{7}{25}$. Найдите BH .	
24.	В треугольнике ABC , $AC = BC$, $AB = 5$, $\cos \angle BAC = \frac{7}{25}$. Найдите высоту AH .	
25.	В тупоугольном треугольнике $ABC\ AC = BC = 8$, высота AH равна 4. Найдите $\sin ACB$.	
26.	В тупоугольном треугольнике $ABC\ AC = BC = 25$, высота AH равна 20. Найдите $\cos ACB$.	
27.	В треугольнике ABC угол A равен 38°, $AC = BC$. Найдите угол C . Ответ дайте в градусах.	
28.	В треугольнике ABC угол C равен 118°, $AC = BC$. Найдите угол A . Ответ дайте в градусах.	
29.	В треугольнике $ABC\ AC = BC$, угол C равен 52°. Найдите внешний угол CBD . Ответ дайте в градусах.	
30.	В треугольнике $ABCAB = BC$. Внешний угол при вершине B равен 138°. Найдите угол C . Ответ дайте в градусах.	
31.	Один угол равнобедренного треугольника на 90° больше другого. Найдите меньший угол. Ответ дайте в градусах.	
32.	В треугольнике ABC $AB = BC = AC = 2\sqrt{3}$. Найдите высоту CH .	
33.	В равностороннем треугольнике ABC высота CH равна $2\sqrt{3}$. Найдите стороны этого треугольника.	
34.	В треугольнике $ABCAC = BC$, $AB = 4$, высота CH равна $2\sqrt{3}$. Найдите угол C . Ответ дайте в градусах.	
35.	В треугольнике $ABC\ AC = BC = 4$, угол C равен 30° . Найдите высоту AH .	
36.	В треугольнике ABC $AC = BC = 2\sqrt{3}$, угол C равен 120° . Найдите высоту AH .	

Геометрия (окружности)

$\mathcal{N}\!$	Задание	Ответ
1.	Периметр треугольника равен 12, а радиус вписанной окружности равен 1.	
	Найдите площадь этого треугольника.	
2.	Площадь треугольника равна 24, а радиус вписанной окружности равен 2.	
	Найдите периметр этого треугольника.	
3.	Около окружности, радиус которой равен 3, описан многоугольник, периметр	
	которого равен 20. Найдите его площадь.	
4.	Найдите радиус окружности, вписанной в правильный треугольник, высота	
	которого равна 6.	
5.	Радиус окружности, вписанной в правильный треугольник, равен 6. Найдите	
	высоту этого треугольника.	
6.	Сторона ромба равна 1 , острый угол равен 30^0 Найдите радиус вписанной	
	окружности этого ромба.	
7.	Острый угол ромба равен 30°. Радиус вписанной в этот ромб окружности равен 2.	
	Найдите сторону ромба.	
8.	Найдите сторону правильного шестиугольника, описанного около окружности,	
	радиус которой равен $\sqrt{3}$.	
9.	Найдите радиус окружности, вписанной в правильный шестиугольник со	
	стороной $\sqrt{3}$.	
10.	Боковые стороны трапеции, описанной около окружности, равны 3 и 5. Найдите	
	среднюю линию трапеции.	
11.	Точки A, B, C, D , расположенные на окружности, делят эту	
	окружность на четыре дуги AB , BC , CD и AD , градусные	
	величины которых относятся соответственно как	
	$4:2:3:6$. Найдите угол A четырехугольника $ABCD$. Ответ \bigcirc	
	дайте в градусах.	
	$A \setminus B$	
12.	Четырехугольник <i>АВСD</i> вписан в окружность.	
12.	Угол ABD равен 75°, угол CAD равен 35°. Найдите	
	угол АВС. Ответ дайте в градусах.	
	угозглас. Ответ данге в градувах.	
	A D	
4.5		
13.	Высота правильного треугольника равна 3. Найдите радиус окружности,	
4.4	описанной около этого треугольника.	
14.	Чему равна сторона правильного шестиугольника, вписанного в окружность,	
1.7	радиус которой равен 6?	
15.	Одна сторона треугольника равна $\sqrt{2}$ радиус описанной окружности равен 1.	
	Найдите острый угол треугольника, противолежащий этой стороне. Ответ дайте в	
	градусах.	